Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept.
نویسندگان
چکیده
Echolocation is an active sense enabling bats and toothed whales to orient in darkness through echo returns from their ultrasonic signals. Immediately before prey capture, both bats and whales emit a buzz with such high emission rates (≥ 180 Hz) and overall duration so short that its functional significance remains an enigma. To investigate sensory-motor control during the buzz of the insectivorous bat Myotis daubentonii, we removed prey, suspended in air or on water, before expected capture. The bats responded by shortening their echolocation buzz gradually; the earlier prey was removed down to approximately 100 ms (30 cm) before expected capture, after which the full buzz sequence was emitted both in air and over water. Bats trawling over water also performed the full capture behavior, but in-air capture motions were aborted, even at very late prey removals (<20 ms = 6 cm before expected contact). Thus, neither the buzz nor capture movements are stereotypical, but dynamically adapted based on sensory feedback. The results indicate that echolocation is controlled mainly by acoustic feedback, whereas capture movements are adjusted according to both acoustic and somatosensory feedback, suggesting separate (but coordinated) central motor control of the two behaviors based on multimodal input. Bat echolocation, especially the terminal buzz, provides a unique window to extremely fast decision processes in response to sensory feedback and modulation through attention in a naturally behaving animal.
منابع مشابه
Buzzing during biosonar-based interception of prey in the delphinids Tursiops truncatus and Pseudorca crassidens.
Echolocating bats and toothed whales probe their environment with ultrasonic sound pulses, using returning echoes to navigate and find prey in a process that appears to have resulted from a remarkable convergence of the two taxa. Here, we report the first detailed quantification of echolocation behaviour during prey capture in the most studied delphinid species, a false killer whale and a bottl...
متن کاملEcholocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii.
The two sibling mouse-eared bats, Myotis myotis and M. blythii, cope with similar orientation tasks, but separate their trophic niche by hunting in species-specific foraging microhabitats. Previous work has shown that both species rely largely on passive listening to detect and glean prey from substrates, and studies on other bat species have suggested that echolocation is ;switched off' during...
متن کاملEcholocation behaviour and prey-capture success in foraging bats: laboratory and field experiments on Myotis daubentonii.
During prey-capture attempts, many echolocating bats emit a 'terminal buzz', when pulse repetition rate is increased and pulse duration and interpulse interval are shortened. The buzz is followed by a silent interval (the post-buzz pause). We investigated whether variation in the structure of the terminal buzz, and the calls and silent periods following it, may provide information about whether...
متن کاملBreaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey.
Both mammals and birds experience a performance trade-off between producing vocalizations with high bandwidths and at high repetition rate. Echolocating bats drastically increase repetition rate from 2-20 calls s(-1) up to about 170 calls s(-1) prior to intercepting airborne prey in order to accurately track prey movement. In turn, bandwidth drops to about 10-30 kHz for the calls of this 'final...
متن کاملSuperfast muscles set maximum call rate in echolocating bats.
As an echolocating bat closes in on a flying insect, it increases call emission to rates beyond 160 calls per second. This high call rate phase, dubbed the terminal buzz, has proven enigmatic because it is unknown how bats are able to produce calls so quickly. We found that previously unknown and highly specialized superfast muscles power rapid call rates in the terminal buzz. Additionally, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 13 شماره
صفحات -
تاریخ انتشار 2015